Tiny turbulent swirls in the solar wind.
Using ESA’s Cluster quartet of satellites as a space plasma microscope,
scientists have zoomed in on the solar wind to reveal the finest detail
yet, finding tiny turbulent swirls that could play a big role in heating
it.
Turbulence is highly complex and all around us, evident in water flowing
from a tap, around an aircraft wing, in experimental fusion reactors on
Earth, and also in space.
In the stream of charged particles emitted by the Sun – the solar wind –
turbulence is thought to play a key part in maintaining its heat as it
streams away and races across the Solar System.
As the solar wind expands, it cools down, but to a much smaller extent than would be expected if the flow were smooth.
Turbulence arises from irregularities in the flow of particles and
magnetic field lines, but understanding how this energy is transferred
from the large scales where it originates, to the small scales where it
is dissipated, is like trying to trace energy as it is transferred from
the smooth, laminar flow of a river down to the small turbulent eddies
formed at the bottom of a waterfall.
In a new study, two of the four Cluster satellites have made extremely
detailed observations of plasma turbulence in the solar wind.
They were separated by just 20 km along the direction of the plasma flow
and operated in ‘burst mode’ to take 450 measurements per second.
By comparing the results with computer simulations, scientists confirmed
the existence of sheets of electric current just 20 km across, on the
borders of turbulent swirls.
“This shows for the first time that the solar wind plasma is extremely
structured at this high resolution,” says Silvia Perri of the Universita
della Calabria, Italy, and lead author of the paper reporting the
result.
Cluster previously detected current sheets on much larger scales of 100
km in the magnetosheath, the region sandwiched between Earth’s magnetic
bubble – the magnetosphere – and the bow shock that is created as it
meets the solar wind.
At the borders of these turbulent eddies the process of ‘magnetic
reconnection’ was detected, whereby oppositely directed field lines
spontaneously break and reconnect with other nearby field lines, thus
releasing their energy.
“Although we haven’t yet detected reconnection occurring at these new,
smaller scales, it is clear that we are seeing a cascade of energy which
may contribute to the overall heating of the solar wind,” said Dr
Perri.
Future missions such as ESA’s Solar Orbiter and NASA’s Solar Probe Plus
will be able to determine whether similar processes are also in play
closer to the Sun, while NASA’s Magnetospheric Multiscale mission will
specifically probe the small-scale regions where reconnection can occur.
“This Cluster result demonstrates the mission’s unique capability to
probe universal physical phenomena, in this case pushing the mission’s
instrument measurement capabilities to their limit to unlock features at
small scales,” comments Matt Taylor, ESA’s Cluster Project Scientist.
“Future multi-spacecraft missions will make very detailed studies of
these small-scale plasma phenomena and provide further context to our
Cluster measurements.”
ESA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
No hay comentarios:
Publicar un comentario