jueves, 23 de enero de 2014

NASA : Herschel Telescope Detects Water on Dwarf Planet

 
 Dwarf planet Ceres is located in the main asteroid belt, between the orbits of Mars and Jupiter, as illustrated in this artist's conception. Observations by the Herschel space observatory between 2011 and 2013 find that the dwarf planet has a thin water vapor atmosphere.
Dwarf planet Ceres is located in the main asteroid belt, between the orbits of Mars and Jupiter, as illustrated in this artist's conception. Observations by the Herschel space observatory between 2011 and 2013 find that the dwarf planet has a thin water vapor atmosphere.
Image Credit: ESA/ATG medialab
Image Token:
Scientists using the Herschel space observatory have made the first definitive detection of water vapor on the largest and roundest object in the asteroid belt, Ceres.
Plumes of water vapor are thought to shoot up periodically from Ceres when portions of its icy surface warm slightly. Ceres is classified as a dwarf planet, a solar system body bigger than an asteroid and smaller than a planet.
Herschel is a European Space Agency (ESA) mission with important NASA contributions.
"This is the first time water vapor has been unequivocally detected on Ceres or any other object in the asteroid belt and provides proof that Ceres has an icy surface and an atmosphere," said Michael Küppers of ESA in Spain, lead author of a paper in the journal Nature.
The results come at the right time for NASA's Dawn mission, which is on its way to Ceres now after spending more than a year orbiting the large asteroid Vesta. Dawn is scheduled to arrive at Ceres in the spring of 2015, where it will take the closest look ever at its surface.
"We've got a spacecraft on the way to Ceres, so we don't have to wait long before getting more context on this intriguing result, right from the source itself," said Carol Raymond, the deputy principal investigator for Dawn at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "Dawn will map the geology and chemistry of the surface in high-resolution, revealing the processes that drive the outgassing activity."
For the last century, Ceres was known as the largest asteroid in our solar system. But in 2006, the International Astronomical Union, the governing organization responsible for naming planetary objects, reclassified Ceres as a dwarf planet because of its large size. It is roughly 590 miles (950 kilometers) in diameter. When it first was spotted in 1801, astronomers thought it was a planet orbiting between Mars and Jupiter. Later, other cosmic bodies with similar orbits were found, marking the discovery of our solar system's main belt of asteroids.
Scientists believe Ceres contains rock in its interior with a thick mantle of ice that, if melted, would amount to more fresh water than is present on all of Earth. The materials making up Ceres likely date from the first few million years of our solar system's existence and accumulated before the planets formed.
Until now, ice had been theorized to exist on Ceres but had not been detected conclusively. It took Herschel's far-infrared vision to see, finally, a clear spectral signature of the water vapor. But Herschel did not see water vapor every time it looked. While the telescope spied water vapor four different times, on one occasion there was no signature.
Here is what scientists think is happening: when Ceres swings through the part of its orbit that is closer to the sun, a portion of its icy surface becomes warm enough to cause water vapor to escape in plumes at a rate of about 6 kilograms (13 pounds) per second. When Ceres is in the colder part of its orbit, no water escapes.
The strength of the signal also varied over hours, weeks and months, because of the water vapor plumes rotating in and out of Herschel's views as the object spun on its axis. This enabled the scientists to localize the source of water to two darker spots on the surface of Ceres, previously seen by NASA's Hubble Space Telescope and ground-based telescopes. The dark spots might be more likely to outgas because dark material warms faster than light material. When the Dawn spacecraft arrives at Ceres, it will be able to investigate these features.
The results are somewhat unexpected because comets, the icier cousins of asteroids, are known typically to sprout jets and plumes, while objects in the asteroid belt are not.
"The lines are becoming more and more blurred between comets and asteroids," said Seungwon Lee of JPL, who helped with the water vapor models along with Paul von Allmen, also of JPL. "We knew before about main belt asteroids that show comet-like activity, but this is the first detection of water vapor in an asteroid-like object."
The research is part of the Measurements of 11 Asteroids and Comets Using Herschel (MACH-11) program, which used Herschel to look at small bodies that have been or will be visited by spacecraft, including the targets of NASA's previous Deep Impact mission and upcoming Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-Rex). Laurence O' Rourke of the European Space Agency is the principal investigator of the MACH-11 program.
 
More information about Herschel is online at:
More information about NASA's role in Herschel is available at:
For more information about NASA's Dawn mission, visit:
NASA
Guillermo Gonzalo Sánchez Achutegui

NASA :NASA, MIT, DARPA Host Fifth Annual Student Robotics Challenge Jan. 17

 
Youtube Override:
Brandon Marsell, co-principal investigator for Fluid Slosh, shows off the Slosh model.
Brandon Marsell, co-principal investigator for Fluid Slosh, shows off the Slosh model.
Image Credit:
Amy McCluskey
After a successful demonstration flight in September, the next Orb-1 mission is scheduled to launch on an Antares rocket in January 2014 as part of the NASA Commercial Resupply to Station contract.

The first operational delivery flight to actually carry supplies and experiments, Orbital Sciences Corporation’s unmanned cargo freighter Cygnus will loft approximately 3,217 pounds (1,459 kg) of science equipment, spare parts and supplies to the International Space Station (ISS) for NASA.
Along for the ride with this payload will be the ISS Fluid Slosh experiment, a Space Technology Mission Directorate, Game Changing Development Program project dedicated to improving our understanding of how liquids behave when there is little to no gravity.
"Modern computer models try to predict how liquid moves inside a propellant tank," said NASA's Brandon Marsell, co-principal investigator on the Slosh Project. "Now that rockets are bigger and are going farther, we need more precise data. Most of the models we have were validated under 1 g conditions on Earth. None have been validated in the surface tension-dominated microgravity environment of space."
The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark computational fluid dynamics models, including the interaction between the sloshing fluid and the tank/vehicle dynamics.
Cygnus Spacecraft
Cygnus spacecraft shortly before attachment to ISS on September 29, 2013.
Image Credit:
NASA
 
Powerful rockets use liquid fuel to bring satellites into orbit, and are subjected to varying forces as they are propelled forward. But computer simulations may not accurately represent how liquids behave in low-gravity conditions, causing safety concerns. The Slosh experiments improve these models, and thereby improve rocket safety, by measuring how liquids move around inside a container when external forces are applied to it. This simulates how rocket fuels swirl around inside their tanks while a rocket moves through space.
To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA’s Launch Services Program (LSP) teamed up with NASA’s Game Changing Development (GCD) Program, the Florida Institute of Technology (FIT), and the Massachusetts Institute of Technology (MIT) to perform a series of slosh dynamics experiments in the ISS using the Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) platform. The SPHERES test bed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft propellant tanks.
SLOSH Experiment Package
Slosh experiment launch package.
Image Credit: NASA
"It was a complex and detailed process to bring this concept to fruition,” said Charlie Holicker, an FIT student who worked on the physical design of the experiment and aluminum machining. “The data that this experiment will gather sets the foundation for all long-term space flight involving liquid fuels. It was an honor to be a part of something that will have such a great impact in the exploration of space."
Rich Schulman, an FIT student involved in the Slosh experiment since its beginning, said, “One huge benefit for the students working on this project is seeing firsthand the requirements for developing a payload for the ISS. Having gone through this process successfully, the students involved can effectively build future payloads or projects at the same standard.”
Many satellites launch on rockets powered by liquid propellants, and improved understanding of these propellants could enhance efficiency, potentially lowering costs for industry and taxpayer-funded satellite launches.
Denise M. Stefula
NASA Langley Research Center
 
NASA will participate in the fifth annual Zero Robotics SPHERES Challenge Friday, Jan. 17, at the Massachusetts Institute of Technology (MIT) campus in Cambridge, Mass.
The event will be broadcast live on NASA Television beginning at 7:30 a.m. EST.
The agency will join in the event with the Defense Advanced Research Projects Agency, MIT, the European Space Agency, the Center for the Advancement of Science in Space, IT consulting firm Appirio, and high school student teams from the United States and abroad.
For the competition, NASA will upload software developed by high school students onto bowling ball-sized spherical satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are currently aboard the International Space Station. From there, space station Expedition 38 Commander Oleg Kotov and Flight Engineer Richard Mastracchio will command the satellites to execute the teams' flight program.
During a simulated mission, the teams will complete a special challenge called CosmoSPHERES, a competition in which students must program their satellites to alter a fictional comet’s earthbound trajectory.
Student finalists will be able to see their flight program live on the televised finals, where NASA's Associate Administrator for Science, John Grunsfeld, and retired NASA astronauts Gregory Chamitoff, Gregory Johnson and Barbara Morgan will make a special appearance. The team with the best software performance over several rounds of the competition will win the challenge. The winning team will receive certificates and a SPHERES flight patch flown aboard the space station.
Media wishing to cover this event must contact Sarah McDonnell at MIT at 617-253-8923 or s_mcd@mit.edu.
In addition to their use in this competition, SPHERES satellites are used on the space station to conduct formation flight maneuvers for spacecraft guidance navigation, control and docking. The three satellites that make up SPHERES fly in formation inside the space station's cabin. The satellites provide opportunities to affordably test a wide range of hardware and software.
NASA's Ames Research Center in Moffett Field, Calif., operates and maintains the SPHERES National Laboratory Facility aboard the space station.
For more information about SPHERES, visit:
For NASA TV schedule and video streaming information, visit:
For more about the Zero Robotics Program, visit:
For more information about the International Space Station, visit:
Trent J. Perrotto
Headquarters, Washington
202-358-1100
tperrotto@nasa.gov
Sarah McDonnell
Massachusetts Institute of Technology, Cambridge, Mass.
617-253-8923
s_mcd@mit.edu
NASA
Guillermo Gonzalo Sánchez Achutegui

NASA : NASA Searches for Climate Change Clues in the Gateway to the Stratosphere


NASA's Global Hawk 872
NASA's Global Hawk 872 on a checkout flight from Dryden Flight Research Center, Edwards, Calif., in preparation for the 2014 ATTREX mission over the western Pacific Ocean.
Image Credit: NASA/Tom Miller
Image Token:
NASA's uncrewed Global Hawk research aircraft is in the western Pacific region on a mission to track changes in the upper atmosphere and help researchers understand how these changes affect Earth's climate.
Deployed from NASA's Dryden Flight Research Center in Edwards, Calif., the Global Hawk landed at Andersen Air Force Base in Guam Thursday at approximately 5 p.m. EST and will begin science flights Tuesday, Jan. 21. Its mission, the Airborne Tropical Tropopause Experiment (ATTREX), is a multi-year NASA airborne science campaign.
ATTREX will measure the moisture levels and chemical composition of upper regions of the lowest layer of Earth's atmosphere, a region where even small changes can significantly impact climate. Scientists will use the data to better understand physical processes occurring in this part of the atmosphere and help make more accurate climate predictions.
"We conducted flights in 2013 that studied how the atmosphere works and how humans are affecting it," said Eric Jensen, ATTREX principal investigator at NASA’s Ames Research Center in Moffett Field, Calif. "This year, we plan to sample the western Pacific region which is critical for establishing the humidity of the air entering the stratosphere."
Studies show even slight changes in the chemistry and amount of water vapor in the stratosphere, the same region that is home to the ozone layer, which protects life on Earth from the damaging effects of ultraviolet radiation, can affect climate significantly by absorbing thermal radiation rising from the surface. Predictions of stratospheric humidity changes are uncertain because of gaps in the understanding of the physical processes occurring in the tropical tropopause layer.
ATTREX is studying moisture and chemical composition from altitudes of 55,000 feet to 65,000 feet in the tropical tropopause, which is the transition layer between the troposphere, or the lowest part of the atmosphere, and the stratosphere, which extends up to 11 miles above Earth's surface. Scientists consider the tropical tropopause to be the gateway for water vapor, ozone and other gases that enter the stratosphere. For this mission, the Global Hawk carries instruments that will sample the tropopause near the equator over the Pacific Ocean.
ATTREX scientists installed 13 research instruments on NASA's Global Hawk 872. Some of these instruments capture air samples while others use remote sensing to analyze clouds, temperature, water vapor, gases and solar radiation.
"Better understanding of the exchange between the troposphere and stratosphere and how that impacts composition and chemistry of the upper atmosphere helps us better understand how, and to what degree, the upper atmosphere affects Earth’s climate," Jensen said.
In 2013, for the first time, ATTREX instruments sampled the tropopause region in the Northern Hemisphere during winter, when the region is coldest and extremely dry air enters the stratosphere. Preparations for this mission started in 2011 with engineering test flights to ensure the aircraft and its research instruments operated well in the extremely cold temperatures encountered at high altitudes over the tropics, which can reach minus 115 degrees Fahrenheit. ATTREX conducted six science flights totaling more than 150 hours last year.
Jensen and Project Manager Dave Jordan of Ames lead the ATTREX mission. It includes investigators from Ames and three other NASA facilities: Langley Research Center in Hampton, Va., Goddard Space Flight Center in Greenbelt, Md., and the Jet Propulsion Laboratory in Pasadena, Calif. The team also includes investigators from the National Oceanic and Atmospheric Administration, the National Center for Atmospheric Research, universities and private industry.
ATTREX is one of the first research missions of NASA's new Earth Venture project. These small and targeted science investigations complement NASA's broader science research satellite missions. The Earth Venture missions are part of NASA's Earth System Science Pathfinder Program managed by Langley.
For more information about the ATTREX mission, visit:
An ATTREX press kit is available at
 
NASA
Guillermo Gonzalo Sánchez Achutegui

domingo, 12 de enero de 2014

ESO : Una Mirada a ESO

Una Mirada a ESO

Se suele afirmar que la Astronomía es la ciencia más antigua, y no cabe duda de que una mirada hacia la banda estrellada de la majestuosa Vía Láctea, vista en todo su esplendor en una noche clara, debe haber impresionado a personas de todas las edades y culturas. Hoy en día, la astronomía destaca como una de las ciencias más dinámicas y modernas, ya que utiliza algunas de las tecnologías más avanzadas y sofisticadas. Son tiempos apasionantes para la astronomía, pues la tecnología permite estudiar objetos que se hallan en los lejanos confines del Universo y detectar planetas en torno a otras estrellas. Podemos empezar a responder una pregunta fundamental que nos fascina a todos y cada uno de nosotros: ¿estamos solos en el Universo?
Paranal Observatory
ESO es la organización intergubernamental de ciencia y tecnología de mayor importancia en astronomía. Lleva a cabo un ambicioso programa orientado al diseño, construcción y operación de potentes instalaciones de observación astronómica instaladas en tierra, proporcionando así las herramientas necesarias con el fin de que la astronomía logre importantes descubrimientos científicos. ESO también cumple un importante papel tanto en la difusión como en la organización de la cooperación en investigación científica.
ESO opera en tres sitios, únicos por su calidad para la observación, ubicados en el Desierto de Atacama chileno: La Silla, Paranal y Chajnantor. El primer observatorio de ESO está en La Silla, a 2.400 metros de altitud y a 600 kilómetros al norte de de Santiago de Chile. Está equipado con varios telescopios ópticos con espejos de hasta 3,6 metros de diámetro. El New Technology Telescope, de 3,58 metros, estableció nuevos parámetros para la ingeniería y el diseño de telescopios y fue el primero en el mundo en tener un espejo primario controlado por ordenador, una tecnología desarrollada en ESO y aplicada ahora en la mayoría de los grandes telescopios del mundo. El Telescopio de 3,6 metros de ESO alberga actualmente al buscador de exoplanetas más importante del mundo: HARPS (High Accuracy Radial velocity Planet Searcher o Buscador de Planetas con Velocidad Radial de Alta Precisión), un espectrógrafo con una precisión inigualable.
Mientras La Silla permanece a la vanguardia de la astronomía (sigue siendo el segundo observatorio científicamente más productivo en astronomía terrestre) el observatorio de Paranal, a 2.600 metros de altura, cuenta con el Very Large Telescope (Telescopio Muy Grande, VLT), el telescopio más destacado de la astronomía europea. Paranal está situado unos 130 kilómetros al sur de Antofagasta en Chile, 12 kilómetros hacia el interior desde la costa del Pacífico, en una de las áreas más secas del mundo. Las operaciones científicas comenzaron en 1999 y han dado como resultado varios programas de investigación extremadamente exitosos.
El VLT es un telescopio novedoso basado en las últimas tecnologías de vanguardia. Se trata de un conjunto de cuatro "Telescopios Unitarios", cada uno con un espejo primario de 8,2 metros de diámetro. Con un telescopio de esas características se han obtenido, en una hora de exposición, imágenes de objetos celestes apenas visibles de una magnitud de 30. Esto equivale a ver objetos que son cuatro mil millones de veces más débiles que aquellos que se ven a simple vista. El VLT también cuenta, de manera adicional, con cuatro "Telescopios Auxiliares" móviles de 1,8 metros de diámetro.
Una de las características más interesantes del VLT es la opción de usarlo como un interferómetro óptico gigante (VLT Interferometer, Interferómetro VLT o VLTI). Esto se realiza combinando la luz desde varios de los Telescopios Unitarios, incluyendo uno o más de los cuatro Telescopios Auxiliares móviles de 1,8 metros. En este modo interferométrico, el telescopio posee una visión tan aguda como la de un telescopio del tamaño equivalente a la distancia entre los espejos más lejanos. En el caso del VLTI, con los Telescopios Auxiliares, esta distancia es de más de 200 metros.
Cada año, se presentan alrededor de 2.000 propuestas para utilizar los telescopios de ESO, solicitando de cuatro a seis veces más noches de las que están realmente disponibles. ESO es el observatorio astronómico más productivo del mundo, lo que ha dado como resultado numerosas publicaciones cada año: sólo en el 2010 se publicaron más de 750 artículos en revistas científicas especializadas basados en la información de ESO.
El Gran Conjunto Milimétrico/Submilimétrico de Atacama (Atacama Large Millimeter/submillimeter Array, ALMA), actualmente el proyecto astronómico terrestre más grande, es una instalación revolucionaria para la astronomía mundial. ALMA estará compuesta por un conjunto de 66 antenas gigantes de 12 y 7 metros de diámetro que observarán a longitudes de onda milimétricas y submilimétricas. La construcción de ALMA comenzó en el año 2003 e iniciará las observaciones científicas en el 2011. ALMA está ubicado en el Llano de Chajnantor, a 5.000 metros de altura, por tanto es uno de los observatorios astronómicos más altos del mundo. El proyecto ALMA es una colaboración intercontinental entre Europa, América del Norte, Asia Oriental y la República de Chile. ESO es el socio europeo en ALMA. El observatorio de Chajnantor también alberga a APEX, el telescopio milimétrico y submilimétrico de 12 metros operado por ESO en representación del Observatorio Espacial Onsala, el Instituto Max Planck para Radioastronomía y la propia ESO.
El próximo paso, más allá del VLT, es construir el European Extremely Large optical/infrared Telescope (Telescopio Europeo óptico/infrarrojo Extremadamente Grande, E-ELT) un telescopio tipo 40 metros. El E-ELT será "el mayor ojo del mundo para observar el cielo": el mayor telescopio del mundo que trabajará en los rangos óptico e infrarrojo cercano, para lo cual ESO está elaborando detallados planes de construcción en conjunto con la comunidad astronómica. El E-ELT afrontará varias de las más apremiantes preguntas de la astronomía aún sin resolver. Posiblemente podría revolucionar nuestra percepción del Universo, tal y como hizo el telescopio de Galileo hace 400 años. Se espera que en el año 2011 se de luz verde a su construcción, con el objetivo de comenzar las operaciones a principios de la próxima década.
En la Sede Central de ESO (que incluye el centro científico, técnico y administrativo de la organización) ubicada en Garching, cerca de Munich (Alemania), se llevan a cabo programas de desarrollo técnico para proporcionar a los observatorios la instrumentación científica más avanzada.
ESO
Guillermo Gonzalo Sánchez Achutegui

ESO : Noches de Paranal



Levante la vista en la noche desde el Observatorio Paranal de ESO en Chile y se encontrará con un impresionante panorama. Manchas de azul, naranja, rojo; cada una es una estrella, galaxia o nebulosa diferente que, en conjunto, conforman un cielo resplandeciente. Los astrónomos escudriñan este hermoso trasfondo, intentando desentrañar los misterios del Universo.

Para lograrlo, utilizan telescopios como los Telescopios Auxiliares del VLT que se aprecian en esta fotografía. La imagen muestra tres de las cuatro unidades móviles que alimentan de luz al Interferómetro del VLT, el instrumento óptico más avanzado del mundo. Combinados para constituir un telescopio de mayor envergadura, son mayores que la suma de sus partes: revelan detalles que serían visibles con un telescopio tan grande como la distancia entre ellos.
Crédito: ESO/Y. Beletsky

Imágenes



JPEG grande
2,6 MB




ESO
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com